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Abstract. The article presents an application of instance-based learning
to the problem of expressive music performance. A system is described
that tries to learn to shape tempo and dynamics of a musical performance
by analogy to timing and dynamics patterns found in performances by
a concert pianist. The learning algorithm itself is a straightforward k-
nearest-neighbour algorithm. The interesting aspects of this work are
application-specific: we show how a complex, multi-level artifact like the
tempo/dynamics variations applied by a musician can be decomposed
into well-defined training examples for a learner, and that case-based
learning is indeed a sensible strategy in an artistic domain like music
performance. While the results of a first quantitative experiment turn
out to be rather disappointing, we will show various ways in which the
results can be improved, finally resulting in a system that won a prize in
a recent ‘computer music performance’ contest.

1 Introduction

The work described in this paper is another step in a long-term research endeav-
our that aims at building quantitative models of expressive music performance
via AI and, in particular, machine learning methods [9,10]. This is basic re-
search. We do not intend to engineer computer programs that generate music
performances that sound as human-like as possible. Rather, the goal is to inves-
tigate to what extent a machine can automatically build, via inductive learning
from ‘real-world’ data (i.e., real performances by highly skilled musicians), oper-
ational models of certain aspects of performance, for instance, predictive models
of tempo, timing, or dynamics. In this way we hope to get new insights into
fundamental principles underlying this complex artistic activity, and thus con-
tribute to the growing body of knowledge in the area of empirical musicology
(see [4] for an excellent overview).

In previous work, we managed to show that a computer can indeed find
interesting regularities of musical performance. A new rule learning algorithm
[12] succeeded in discovering a small set of simple, robust, and highly general
rules that predict a substantial part of the note-level expressive choices of a
performer (e.g., whether she will shorten or lengthen a particular note) with
surprisingly high precision [11]. But these rules described only very local, low-
level aspects (things a performer does to a particular note), and indeed, the



‘expressive’ performances produced by the computer on the basis of the learned
rules were far from sounding musical.

Music performance is a highly complex activity, with performers tending
to shape the music at many different levels simultaneously (see below). The
goal of our current work is to complement the note-level rule model with a
predictive model of musical expression at higher levels of the musical structure,
e.g., the level of phrases. This paper presents our first steps in this direction. An
instance-based learning system is described that recognizes performance patterns
at various abstraction levels and learns to apply them to new pieces (phrases)
by analogy to known performances. The learning algorithm itself is a straight-
forward k-nearest neighbour algorithm. The interesting aspects of this work are
thus not so much machine-learning-specific but application-specific: we show
how a complex artistic artifact like the tempo/dynamics variations applied by a
musician can be decomposed into well-defined training examples for a learner,
and that case-based prediction is indeed a sensible strategy in an artistic domain
like music performance. While the results of a first quantitative experiment turn
out to be rather disappointing, we will show various ways in which the results
can be improved, finally resulting in a system that — while still far from being
able to attain the musical quality of human musicians — won a prize in a recent
‘computer music performance’ contest.

The paper is organized as follows: Section 2 briefly introduces the reader
to the notion of expressive music performance and its representation via perfor-
mance curves. Section 3 then describes how the training examples for the learner
are derived (by decomposing complex performance curves into elementary ‘ex-
pressive shapes’ that can be associated with musical phrases at different levels),
and specifies our learning algorithm. Section 4 presents first results of systematic
experiments. Various ways of improving these are shown in Section 5, and Sec-
tion 6 briefly talks about the qualititative, musical side of the results, including
the above-mentioned computer music performance contest. Current and future
research plans are then discussed in the final Section 7.

2 Expressive music performance and performance curves

Expressive music performance is the art of shaping a musical piece by continu-
ously varying important parameters like tempo, dynamics, etc. Human musicians
do not play a piece of music mechanically, with constant tempo or loudness, ex-
actly as written in the printed music score. Rather, they speed up at some
places, slow down at others, stress certain notes or passages by various means,
and so on. The most important parameter dimensions available to a performer
(a pianist, in particular) are tempo and continuous tempo changes, dynamics
(loudness variations), and articulation (the way successive notes are connected).
Most of this is not specified in the written score, but at the same time it is ab-
solutely essential for the music to be effective and engaging. As such, expressive
performance is a phenomenon of central interest in contemporary (cognitively
oriented) musicology.
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Fig. 1. Dynamics curves (relating to melody notes) of performances of the same piece
(Frédéric Chopin, Etude op.10 no.3, E major) by three different Viennese pianists
(computed from recordings on a Bisendorfer 290SE computer-monitored grand piano).

In the following, we will restrict ourselves to two of the most important
parametric dimensions: ¢timing (tempo variations) and dynamics (loudness vari-
ations). The tempo and loudness variations applied by a musician over the course
of a piece (if we can measure them, which is a problem in its own right) can be
represented as tempo and loudness curves, respectively. For instance, Figure 1
shows dynamics curves — the dynamics patterns produced by three different pi-
anists in performing the same piece. Each point represents the relative loudness
with which a particular melody note was played (relative to an averaged ‘stan-
dard’ loudness); a purely mechanical, unexpressive rendition of the piece would
correspond to a perfectly flat horizontal line at y = 1.0. Variations in tempo can
be represented in an analogous way.

Musically trained readers will notice certain high-level patterns or trends
in the curves in Figure 1 that seem to correlate with lower- and higher-level
phrases of the piece (e.g., a global up-down, crescendo-decrescendo tendency
over the large phrase that covers the first four bars, and a consistent patterning
of the one-bar subphrases contained in it). Extracting and learning to apply such
high-level expressive patterns is the goal of the work presented here.

3 Learning Task and Algorithm

3.1 Deriving the training instances: Multilevel decomposition of
performance curves

Our starting material is the scores of musical pieces plus measurements of the
tempo and dynamics variations applied by a pianist in actual performances of
these pieces, represented as tempo and dynamics curves. Both tempo and loud-
ness are represented as multiplicative factors, relative to the average tempo and



dynamics of the piece. For instance, a tempo value of 1.5 for a note means that
the note was played 1.5 times as fast as the average tempo of the piece, and a
loudness of 1.5 means that the note was played 50% louder than the average
loudness of all melody notes. In addition, the system is given information about
the hierarchical phrase structure of the pieces, currently at four levels of phrasing.
Phrase structure analysis is currently done by hand, as no reliable algorithms
are available for this task.

Given a performance (dynamics or tempo) curve, the first problem is to
define and extract the training examples for phrase-level learning. Remember
that we want to learn how a performer ‘shapes’ phrases at different structural
levels by tempo and dynamics ‘gestures’. To that end, the complex curve must be
decomposed into basic expressive ‘gestures’ or ‘shapes’ that represent the most
likely contribution of each phrase to the overall observed performance curve.

As approximation functions to represent these shapes we decided to use the
class of second-degree polynomials (functions of the form y = az? + bz + c),
because there is quite a consensus in musicology that high-level tempo and dy-
namics are well characterized by quadratic or parabolic functions [5,7, 8] (but
see section 5.4 below). Decomposing a given performance curve is an iterative
process, where each step deals with a specific level of the phrase structure: for
each phrase at a given level, we compute the polynomial that best fits the part of
the curve that corresponds to this phrase, and ‘subtract’ the tempo or dynamics
deviations ‘explained’ by the approximation. The curve that remains after this
‘subtraction’ is then used in the next level of the process. We start with the
highest given level of phrasing and move to the lowest.

As by our definitions, tempo and dynamics curves are lists of multiplicative
factors, ‘subtracting’ the effects predicted by a fitted curve from an existing
curve simply means dividing the y values on the curve by the respective values
of the approximation curve.

More formally, let N, = {n1, ..., g} be the sequence of melody notes spanned
by a phrase p, O, = {onset,(n;) : n; € Np} the set (sequence) of relative note
positions of these notes within phrase p (on a normalized scale from 0 to 1), and
E, = {expr(n;) : n; € Np} the part of the performance curve (i.e., tempo or
dynamics values) associated with these notes. Fitting a second-order polynomial
onto E, then means finding a function f,(z) = a?z + bz + c that minimizes

D(fy(),Ny) = Y [fp(onsety(ni)) — expr(n)]”

niENp

Given an performance curve E, = {expr(ni),...,expr(nk)} over a phrase p,
and an approximation polynomial fy(z), ‘subtracting’ the shape predicted by
fp(z) from E, then means computing the new curve

E, = {expr(n:)/ fp(onsety(ni)) : i = 1..k}.

The final curve we obtain after the fitted polynomials at all phrase levels
have been ‘subtracted’ is called the residual of the performance curve [13].



To illustrate, Figure 2 shows the dynamics curve of the last part (mm.31-38)
of the Mozart Piano Sonata K.279 (C major), first movement, first section. The
four-level phrase structure our music analyst assigned to the piece is indicated
by the four levels of brackets at the bottom of each plot. The figure shows the
stepwise approximation of the performance curve by polynomials at three of the
four phrase levels, as well as how much of the original curve is accounted for by
the four levels of approximations, and what is left unexplained (the residuals).

3.2 Learning and prediction

Given performance curves decomposed into levels of phrasal shapes, the learning
task is to predict appropriate tempo or dynamics shapes for new musical phrases
(at any level) on the basis of examples of known phrases with associated shapes.
More precisely, what is to be predicted for each example are three coefficients
a, b, c that define an approximation polynomial y = ax? + bz + c. The learning
algorithm is a simple nearest-neighbour algorithm [2]; we first decided to use
only the one nearest neighbour for prediction, because it is not entirely clear
how several predictions (triples of coefficients) should be combined in a sensible
way.

The similarity between phrases is computed as the inverse of the standard
FEuclidean distance. For the moment, phrases are represented simply as fixed-
length vectors of attribute values, where the attributes describe very basic phrase
properties like the length of a phrase, melodic intervals between the starting and
ending notes of the melody, information about where the highest melodic point
(the ‘apex’) of the phrase is, the harmonic progression between start, apex, and
end, whether the phrase ends with a cadential chord sequence, etc. Given such
a fixed-length representation, the definition of the Euclidean distance is trivial.

At prediction time, the shapes predicted by the learner for nested phrases at
different levels must be combined into a final compositive performance curve that
is then evaluated (and can be used to produce a computer-generated ‘expressive’
performance). This is simply the inverse of the curve decomposition problem.
Given a new piece to produce a performance for, the system starts with an initial
‘flat’ performance curve (a list of 1.0 values) and then successively multiplies the
current value by the phrase-level predictions.

Formally, for a given note m; that is contained in m hierarchically nested
phrases p;, j = 1...m, the expression (tempo or dynamics) value expr(n;) to be
applied to it is computed as

m

expr nl H onset )),

where f,, is the approximation polynomial predicted as being best suited for the
jth-level phrase p; by the nearest-neighbour learning algorithm.
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Fig. 2. Multilevel decomposition of dynamics curve of performance of Mozart Sonata
K.279:1:1, mm.31-38. From top to bottom: (1) original dynamics curve (black) plus
the second-order polynomial giving the best fit at the top phrase level (grey); (2+3)
each show, for two lower phrase levels, the dynamics curve after ‘subtraction’ of the
previous approximation, and the best-fitting approximations at this phrase level; (4):
‘reconstruction’ (grey) of the original curve by the polynomial approximations; (5):
residuals after all higher-level shapes have been subtracted.



Table 1. Mozart sonata sections used in experiments (to be read as
<sonataName>:<movement>:<section>); notes refers to ‘melody’ notes.

phrases at level
Piece tempo time sig. |notes| 1 2 3 4
K.279:1:1 fast 4/4 391 |50 19 9 5
K.279:1:2 fast 4/4 638 | 79 36 14 5
K.280:1:1 fast 3/4 406 | 42 19 12 4
K.280:1:2 fast 3/4 590 | 65 34 17 6
K.280:2:1 slow 6/8 94 |23 12 6 3
K.280:2:2 slow  6/8 154 | 37 18 8 4
K.280:3:1 fast 3/8 277 128 19 8 4
K.280:3:2 fast  3/8 379 |40 29 13 5
K.282:1:1 slow  4/4 165 | 24 10 5 2
K.282:1:2 slow 4/4 213 |29 12 6 3
K.282:1:3 slow  4/4 31 4 2 1 1
K.283:1:1 fast 3/4 379 | 83 23 10 5
K.283:1:2 fast 3/4 428 | 59 32 13 6
K.283:3:1 fast  3/8 326 | 53 30 12 3
K.283:3:2 fast 3/8 558 | 79 47 19 6
K.332:2 slow  4/4 477 | 49 23 12 4
Total: 5506 |714 365 165 66

4 A First Experiment

4.1 The Data

The data used in the following experiments were derived from performances of
Mozart piano sonatas on a Bosendorfer SE 290 computer-controlled piano by a
Viennese concert pianist. The SE 290 is a full concert grand piano with a special
mechanism that measures every key and pedal movement with high precision and
stores this information in a format similar to MIDI. From these measurements,
and from a comparison with the notes in the written score, the tempo and
dynamics curves corresponding to the performances can be computed.

A manual phrase structure analysis of some sections of these sonatas was
carried out by a musicologist. Phrase structure was marked at four hierarchi-
cal levels. The resulting set of annotated pieces available for our experiment is
summarized in Table 1. The pieces and performances are quite complex and dif-
ferent in character; automatically learning expressive strategies from them is a
challenging task.

4.2 Quantitative Results

A systematic leave-one-piece-out cross-validation experiment was carried out
on these data. Each of the 16 sonata sections was once set aside as a test
piece, while the remaining 15 pieces were used for learning. The learned



Table 2. Results of piece-wise cross-validation experiment. Measures subscripted with
D refer to the ‘default’ (inexpressive) performance, those with L to the performance
produced by the learner. Mean is the simple mean, WMean the weighted mean (indi-
vidual results weighted by the relative length (number of notes) of the pieces).

dynamics tempo
MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL CorrL
kv279:1:1| .0383 .0409 .1643 .1543 .6170|.0348 .0420 .1220 .1496 .3095
kv279:1:2| .0318 .0736 .1479 .1978 .4157|.0244 .0335 .1004 .1317 .2536
kv280:1:1| .0313 .0275 .1432 .1238 .6809]| .0254 .0222 .1053 .1071 .4845
kv280:1:2| .0281 .0480 .1365 .1637 .4517|.0250 .0323 .1074 .1255 .3124
kv280:2:1| .1558 .0831 .3498 .2002 .7168|.0343 .0207 .1189 .1111 .7235
kv280:2:2| .1424 .0879 .3178 .2235 .6980|.0406 .0460 .1349 .1463 .4838
kv280:3:1| .0334 .0139 .1539 .0936 .7656|.0343 .0262 .1218 .1175 .5276
kv280:3:2| .0226 .0711 .1231 .2055 .4492| .0454 .0455 .1365 .1412 .3006
kv282:1:1| .1126 .0476 .2792 .1737 .7609|.0295 .0320 .1212 .1216 .3689
kv282:1:2| .0920 .0538 .2537 .1829 .6909|.0227 .0443 .1096 .1555 .2863
kv282:1:3| .1230 .0757 .2595 .2364 .6698|.1011 .0529 .2354 .1741 .8104
kv283:1:1| .0283 .0236 .1423 .1206 .5907|.0183 .0276 .0918 .1196 .2409
kv283:1:2| .0371 .0515 .1611 .1625 .4469|.0178 .0274 .0932 .1197 .1972
kv283:3:1| .0404 .0319 .1633 .1324 .5993|.0225 .0216 .1024 .1083 .4300
kv283:3:2| .0417 .0399 .1676 .1457 .5305|.0238 .0244 .1069 .1116 .3060
kv332:2 | .0919 .0824 .2554 .2328 .5599| .0286 .0436 .1110 .1529 .1684
Mean: .0657 .0533 .2012 .1718 .6027|.0330 .0339 .1199 .1308 .3877
WDMean: | .0486 .0506 .1757 .1662 .5584|.0282 .0332 .1108 .1285 .3192

phrase-level predictions were then applied to the test piece, and the follow-
ing measures were computed: the mean squared error of the learner’s pre-
dicted curve relative to the actual performance curve produced by the pianist
(MSE = Y7, (pred(n;) — expr(n;))?/n), the mean absolute error (MAE =
S, |pred(n;) — expr(n;)|/n), and the correlation between predicted and ‘true’
curve. MSE and MAE were also computed for a default curve that would cor-
respond to a purely mechanical, unexpressive performance, i.e., a performance
curve consisting of all 1’s. That allows us to judge if learning is really better
than just doing nothing. The results of the experiment are summarized in Table
2, where each line gives the results obtained on the respective test piece when
all others were used for training.

At a first glance, the results look rather disappointing. We are interested
in cases where the relative errors (i.e., MSEL/MSEp and MAE./MAEp) are
less than 1.0, that is, where the curves predicted by the learner are closer to the
pianist’s actual performance than a purely mechanical rendition. In the dynamics
dimension, this is the case in 11 out of 16 cases for MSE, and in 12 out of 16 for
MAE. Tempo seems basically unpredictable: only in 5 (MSE) and 3 (MAE) cases,
respectively, did learning produce an improvement over no learning, at least in
terms of these purely quantitative, unmusical measures Also, the correlations
vary between 0.77 (kv280:3:1, dynamics) and only 0.17 (kv332:2, tempo).



Averaging over all 16 experiments, it seems that dynamics seems learnable
under this scheme to some extent — the relative errors being RMSE = 0.811,
RMAE = 0.854 (unweighted), RMSE = 1.041, RMAE = 0.945 (weighted)
respectively — while tempo seems hard to predict in this way — all relative
errors are above 1.0.

5 Improving the results

The above result were rather disappointing. Even keeping in mind that artistic
performance of difficult music like Mozart sonatas is a complex and certainly not
entirely predictable phenomenon, we had hoped that there would be something
predictable about phrase-level tempo and dynamics that a learner could pick up.
But the above results are not the end of the story, and in the following sections
we explore ways in which they can be improved — at the end we will end up
with a system that at least partly makes surprisingly good predictions and even
won a prize in a performance contest (see Section 6).

5.1 More homogeneous training sets

One way of improving the results is by noting that Mozart piano sonatas are
highly complex music, with a lot of diversity in character. Splitting this set of
rather different pieces into more homogeneous subsets and performing learning
within these subsets should make the task easier for the learner. For instance,
it is known in musicology that absolute tempo has quite an impact on what
performance patterns sound acceptable. And indeed, it turns out that simply
separating the pieces into fast and slow ones and learning in each of these sets
separately considerably increases the number of cases where learning produces
an improvement over no learning, both in the dynamics and the tempo domain.
Table 3 summarizes the results in terms of wins/losses between learning and no
learning for both learning settings. The improvement is obvious. However, the
tempo domain is still a problem, with only 7 wins out of 16 cases.

Table 3. Summary of wins vs. losses between learning and no learning; + means curves
predicted by the learner better fit the pianist than a flat curve (i.e., relative error < 1),
— means the opposite. First line: piece-level cross-validation over all pieces; second line:
learning and testing on fast and slow pieces separately.

Training set| MSE/dynamics MAE/dynamics| MSE/tempo MAE /tempo
all pieces 11+/5- 12+ /4- 5+/11- 3+/13-
slow / fast 14+ /2- 14+ /2- 7+/9- 7+/9-




5.2 Varying numbers of neighbours and phrase levels

All the results so far were produced by a k-NN learner with & = 1. We ini-
tially chose k = 1 because we could not think of a meaningful way to combine
the predictions of several neighbours — simple pairwise averaging of triples of
polynomial coefficients seemed not sensible. The three coefficients have a very
different impact on the shape of a phrase pattern and thus on the musical effect,
and they interact. But in experiments it turned out that in the absence of a more
informed combination strategy, even simple averaging of several neighbours’ pre-
dictions can substantially improve the quality of the predicted curves. Table 4
shows the results obtained by increasing the number & of neighbours used in the
prediction. The dynamics results in particular show substantial improvement —
the RMSE (MSE./MSEp) drops from 1.041 for & = 1 to 0.654 for k = 10, the
RMAE from 0.946 to 0.787, and the correlation improves. There is also some
improvement in the tempo dimension, with at least the RMSE dropping below
1.0. The attendant slight drop in correlation indicates that with increasing k,
the learner tends to reproduce fewer of the local tempo changes of the pianist,
while improving the overall fit at higher levels.

In further experiments, it turned out that the highest level of phrasing that
was marked by our musicologist — extended phrases that span several, some-
times many, bars — was not well mirrored in the performances by our pianist.
Ignoring the highest phrase level and learning and predicting only at the lower
three phrase levels leads to even better result, as shown in the last rows in Table
4. Finally, learning beats no learning even in the tempo dimension.

Table 4. Varying the numbers of neighbours and phrase levels. Top: errors (weighted
means over all test pieces). Bottom: wins/losses relative to default.

dynamics tempo
Variant MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L

4 levels, INN |.0486 .0506 .1757 .1662 .5584|.0282 .0332 .1108 .1285 .3192
4 levels, 2NN | .0486 .0395 .1757 .1520 .5637|.0282 .0299 .1108 .1239 .3105
4 levels, 3NN |.0486 .0354 .1757 .1466 .5918|.0282 .0297 .1108 .1231 .2871
4 levels, 5NN |.0486 .0336 .1757 .1424 .6114|.0282 .0292 .1108 .1208 .2786
4 levels, 10NN| .0486 .0318 .1757 .1382 .6166|.0282 .0276 .1108 .1157 .2960
3 levels, 10NN| .0486 .0312 .1757 .1380 .6096|.0282 .0271 .1108 .1136 .2937

Variant MSE/dynamics MAE/dynamics|MSE/tempo MAE/tempo
4 Tevels, INN 11+/5 12+/4 5+/11- 3+/13-
4 levels, 2NN 124/4- 13+/3- 7+/9- 4+4/12-
4 levels, 3NN 12+ /4- 14+/2- 6+/10-  2+/1=/13
4 levels, 5NN 14+/2- 14+/2- 8+/8- 5+/11-
4 levels, 10NN|  14+/2- 15+/1- 10+/6- 6-+/10-
3 levels, 10NN 15+ /1- 154 /1- 11+/1=/4- 9+ /17-




5.3 Improving the musical quality by learning local rules

As Figure 2 above shows quite clearly, hierarchically nested quadratic functions
tend to reconstruct the larger trends in a performance curve quite well, but
they cannot describe all the detailed local nuances added by a pianist, e.g., the
emphasis on particular notes. Local nuances will be left over in what we call
the residuals — the tempo and dynamics fluctuations left unexplained by the
phrase-level polynomials. These can be expected to represent a mixture of noise
and meaningful or intended local deviations.

In order to also learn a model of these intended deviations, we applied a
rule learning algorithm to the residuals. The goal was to induce note-level rules
that predict when the pianist will significantly lengthen or shorten a particular
note relative to its context, or play it significantly louder or softer. The learn-
ing algorithm used was PLCG, which has been shown to be quite effective in
distinguishing between signal and noise and discovering reliable rules when only
a part of the data can be explained [12]. Combining the learned rules with a
simple numeric prediction scheme again based on a k-NN algorithm produces
a partial model of note-level nuances that predicts local timing and dynamics
changes to be applied to some individual notes.

Combining these note-level predictions with the phrase-level predictions
yields an additional slight reduction in MSE and MAE both for tempo and
dynamics, but the difference is almost negligible (though consistently in favour
of the combined learner). The interesting fact is that the correlation values im-
prove significantly. For instance, combining the note-level model with the & levels,
10NN learner yields (weighted mean) correlations of 0.6182 for dynamics and
0.3588 for tempo — for tempo in particular, this is significantly higher than any
of the values in Table 4. Obviously, the note-level model captures some impor-
tant local choices of the pianist (which also strongly contribute to the musical
quality of the performance).

5.4 A fairer comparison

A final way of ‘improving’ the results is to note that the error measures we used
so far in this paper may not be quite appropriate. What was compared was the
performance (tempo or dynamics) curve produced by composing the polynomi-
als predicted by the learner, with the curve corresponding to the pianist’s actual
performance. However, what the k-NN learner learned from was not the actual
performance curves, but an approximation, namely, the polynomials fitted to the
curve at various phrase levels. And maybe this approximation is not very good
to begin with. This is partly confirmed by a look at Table 5, which summarizes
how well the four-level decompositions (without the residuals) reconstruct the
respective training curves.! The dynamics curves are generally better approxi-
mated by the four levels of polynomials than the tempo curves, and the difference
is dramatic. That may explain in particular why our tempo results were so poor.

! That is, we look not at the performance of the learning system, but only at the
effectiveness of approximating a given curve by four levels of quadratic functions.



Table 5. Summary of fit of four-level polynomial decomposition on the training data.
Measures subscripted with D refer to the ‘default’ (mechanical, inexpressive) perfor-
mances (repeated from table 2), those with P to the fit of the curves reconstructed by
the polynomial decompositions.

MSEp MSEp| RMSE MAEp MAEp| RMAE |Corrp
dynamics| .0486 .0049 | .1008 | .1757 .0501 | .2851 |.9397
tempo .0282 .0144 | .5106 | .1108 .0755 | .6814 |.6954

Table 6. Summary of errors resulting from comparing the learner’s predictions to the
‘reconstructed’ training curve rather than the actual performance curve produced by
the pianist. Shown are weighted means over all training examples.

dynamics tempo
Variant MSED MSEL MAED MAEL COI‘I‘L MSED MSEL MAED MAEL COI‘I‘L

4 levels, INN | .0437 .0457 .1665 .1543 .5936|.0141 .0190 .0811 .0959 .4517
4 levels, 2NN | .0437 .0345 .1665 .1394 .5995|.0141 .0158 .0811 .0919 .4361
4 levels, 3NN | .0437 .0304 .1665 .1339 .6296|.0141 .0156 .0811 .0922 .4020
4 levels, 5NN | .0437 .0286 .1665 .1292 .6522|.0141 .0151 .0811 .0894 .3829
4 levels, 1I0NN| .0437 .0268 .1665 .1249 .6571|.0141 .0135 .0811 .0831 .4137
3 levels, 1I0NN| .0437 .0262 .1664 .1246 .6489|.0141 .0130 .0811 .0806 .4155

The finding implied by Table 5 has implications for musicology, where it
has hitherto been believed (but never systematically tested with large numbers
of real performances) that quadratic functions are a reasonable model class for
expressive timing (e.g., [7,13]). But it also suggests that the above way of com-
puting prediction error was not entirely fair. It would seem more appropriate to
compare the predicted curves not to the actual performance curve, but to the
approximation curve that is implied by the four levels of quadratic functions
that were used as training examples.? Correctly predicting these is the best the
learner could hope to achieve. Table 6 shows the error figures we obtain in this
way, for all the k-NN learners described above.

As can be seen, the situation indeed now looks better for our learner (compare
this to Table 4 above). Note the substantially higher correlations in the tempo
domain — it is obviously easier to predict approximated curves than real curves.
There is also some improvement in terms of the numbers of wins vs. losses against
the default. For example, with 3 levels of phrasing and 10 nearest neighbours
(last line in Table 6) we get win/loss ratios of 15+/1- for dynamics (both for
MSE and MAE) and 11+/1=/4- (MSE) and 10+/6- (MAE) for tempo. That is
the best we managed to obtain so far.

2 Actually, the most direct comparison would be between the predicted and ‘true’
polynomial coefficients; but numeric errors and correlations at this level would be
hard to interpret intuitively or musically.



Of course, this ‘trick’ of changing the definition of error does not change
the musical quality of the results, but it gives a more realistic picture of the
capabilities of nearest-neighbour learning in this domain.

6 Musical Results

The musical quality of the results is hard to describe in a paper. Generally, the
quality varies strongly between pieces, and even within pieces — passages that
are musically sensible are sometimes followed by rather extreme errors, at least
in musical terms. One incorrect shape can seriously compromise the quality of
a composite performance curve that would otherwise be perfectly musical. The
quantitative measures MSE, MAE, and correlation are not necessarily indicative
of the quality of the listening experience.

Figure 3 tries to give the reader an impression of how well the learning system
(phrase-level + note-level) can predict how a pianist is going to play a given
passage. This is a case where prediction worked quite well, especially concerning
the higher-level aspects. Some of the local patterns were also predicted quite
well, while others were obviously missed.
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Fig. 3. Learner’s predictions for the dynamics curve of Mozart Sonata K.280, 3rd
movement, mm. 25-50. Top: quadratic performance shapes predicted for phrases at
four levels; bottom: composite predicted dynamics curve resulting from phrase-level
shapes and note-level predictions (grey, without markers) vs. pianist’s actual dynamics
(black, with markers).



The curve shown in Figure 3 is from a computer-generated performance of the
Mozart piano sonata K.280 in F major that was produced by the 1-NN learning
algorithm + rules learned from the residuals, after training on other sonatas.
A recording of this performance was submitted to an International Computer
Piano Performance Rendering Contest® (RENCON’02) in Tokyo in September
2002, where it won Second Prize behind a rule-based rendering system that
had been carefully tuned by hand. The rating was done by a jury of human
listeners. While this result does in no way imply that a machine will ever be
able to learn to play music like a human artist, we do consider it a nice success
for a machine learning system. This was an early result, and we expect further
improvement by increasing the number of neighbours k, refining the strategy for
combining predictions, and introducing contextual knowledge (see below). We
hope to demonstrate some interesting sound examples at the conference.

7 Conclusions

To summarize, this paper has presented a system that combines case-based with
rule-based learning in the difficult domain of expressive music performance. First
experimental results are at least encouraging. Case-based learning for expressive
performance has been proposed before in the domain of expressive phrasing in
jazz [1, 6], where the promise of CBR was shown, but the evaluation was mostly
qualitative and based on relatively small numbers of phrases. The work presented
here thus constitutes the first large-scale quantitative evaluation of case-based
learning for expressive performance (against a high-class concert pianist).

There are numerous possibilities for improvement that are currently being
investigated. One obvious limitation is the propositional attribute-value repre-
sentation used to characterize phrases, which does not permit the learner to
refer to details of the internal structure and content of phrases. Here, we now
investigate the use of first-order logic representations and ILP methods [3].

A related problem is that phrasal shapes are predicted individually and inde-
pendently of the shapes associated with (or predicted for) other, related phrases,
i.e., phrases that contain the current phrase, or are contained by it. Obviously,
this is too simplistic. Shapes applied at different levels are highly dependent. We
are now trying to introduce dependency information via the notion of context,
very preliminary experiments with a new relational instance-based learner with
a context-sensitive similarity measure indicate that this may be fruitful.

The above experiments showed that combining predictions by more than one
nearest neighbour greatly improves the results. Our current stratey for combining
the predictions of k& > 1 neighbours — simple coefficient averaging — is too
simplistic. A solution we are going to study is to compute the actual performance
curve that would be jointly produced by the k predicted polynomials, and then
again fit a single polynomial to the resulting curve to get the final, ‘combined’
coefficients; in other words, we will average curves instead of coefficients.

3 yes, there is such a thing ...



A general problem with nearest neigbour learning is that it does not pro-
duce interpretable models. As the ultimate goal of our project is to contribute
new insights to musical performance research, this is a serious drawback. Along
these lines, we will investigate both feature selection/weighting and alternative
learning algorithms.
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